<!DOCTYPE html><html lang="en"><head>
<meta http-equiv="Content-Type" content="text/html charset=UTF-8">
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width">
<meta name="x-apple-disable-message-reformatting">
<title>TLDR Data</title>
<meta name="color-scheme" content="light dark">
<meta name="supported-color-schemes" content="light dark">
<style type="text/css">
:root {
color-scheme: light dark; supported-color-schemes: light dark;
}
*,
*:after,
*:before {
-webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box;
}
* {
-ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%;
}
html,
body,
.document {
width: 100% !important; height: 100% !important; margin: 0; padding: 0;
}
body {
-webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; text-rendering: optimizeLegibility;
}
div[style*="margin: 16px 0"] {
margin: 0 !important;
}
table,
td {
mso-table-lspace: 0pt; mso-table-rspace: 0pt;
}
table {
border-spacing: 0; border-collapse: collapse; table-layout: fixed; margin: 0 auto;
}
img {
-ms-interpolation-mode: bicubic; max-width: 100%; border: 0;
}
*[x-apple-data-detectors] {
color: inherit !important; text-decoration: none !important;
}
.x-gmail-data-detectors,
.x-gmail-data-detectors *,
.aBn {
border-bottom: 0 !important; cursor: default !important;
}
.btn {
-webkit-transition: all 200ms ease; transition: all 200ms ease;
}
.btn:hover {
background-color: #f67575; border-color: #f67575;
}
* {
font-family: Arial, Helvetica, sans-serif; font-size: 18px;
}
@media screen and (max-width: 600px) {
.container {
width: 100%; margin: auto;
}
.stack {
display: block!important; width: 100%!important; max-width: 100%!important;
}
.btn {
display: block; width: 100%; text-align: center;
}
}
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
a {
color: inherit !important; text-decoration: underline !important;
}
</style>
<!--[if mso | ie]>
<style type="text/css">
a {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
a {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
</style>
<![endif]-->
</head>
<body class="">
<div style="display: none; max-height: 0px; overflow: hidden;">OpenAI built a bespoke internal AI data agent that lets employees ask natural-language questions and get accurate, contextual data insights β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β </div>
<div style="display: none; max-height: 0px; overflow: hidden;">
<br>
</div>
<table align="center" class="document">
<tbody>
<tr>
<td valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" class="container" width="600">
<tbody>
<tr class="inner-body">
<td>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr class="header">
<td bgcolor="" class="container">
<table width="100%">
<tbody>
<tr>
<td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" style="margin-top: 0px;" width="100%">
<tbody>
<tr>
<td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div style="text-align: center;">
<span style="margin-right: 0px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/Ec8NcntOc4-R7m71C9SEAjXJK9YZsLXtPpnrPOUzi-g=442" rel="noopener noreferrer" target="_blank"><span>Sign Up</span></a>
|<span style="margin-right: 2px; margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisetopnav/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/Auh1G7D7D-w0wgfp8ozMSrJvgJxrJwr_Hgw-uPIlOB4=442" rel="noopener noreferrer" target="_blank"><span>Advertise</span></a></span>|<span style="margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Fweb-version%3Fep=1%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=e337959e-001d-11f1-a4b0-39464c22f659%26pt=campaign%26t=1770030465%26s=31362ae34087750a9a476b70a5981b6e7203c5e4f74f1ada62d5e34fff7f005d/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/dJfBTlIgZU363tnyT92VTrFx375lQGBm2toG4ELghUg=442"><span>View Online</span></a></span>
<br>
</span></div>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="text-align: center;"><span data-darkreader-inline-color="" style="--darkreader-inline-color:#3db3ff; color: rgb(51, 175, 255) !important; font-size: 30px;">T</span><span style="font-size: 30px;"><span data-darkreader-inline-color="" style="color: rgb(232, 192, 96) !important; --darkreader-inline-color:#e8c163; font-size:30px;">L</span><span data-darkreader-inline-color="" style="color: rgb(101, 195, 173) !important; --darkreader-inline-color:#6ec7b2; font-size:30px;">D</span></span><span data-darkreader-inline-color="" style="--darkreader-inline-color:#dd6e6e; color: rgb(220, 107, 107) !important; font-size: 30px;">R</span>
<br>
</td>
</tr>
</tbody>
</table>
<br>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody></tbody>
</table>
<table style="table-layout: fixed; width:100%;" width="100%">
<tbody>
<tr>
<td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;">
<div style="text-align: center;">
<h1><strong>TLDR Data <span id="date">2026-02-02</span></strong></h1>
</div>
</td>
</tr>
</tbody>
</table>
<table style="table-layout: fixed; width:100%;" width="100%">
<tbody></tbody>
</table>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
<tr bgcolor="">
<td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π±</span></div></div>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Deep Dives</strong></h1>
</div>
</div>
</td>
</tr>
</tbody>
</table>
<table style="table-layout: fixed; width: 100%;" width="100%">
<tbody>
<tr>
<td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2FuI8gjn/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/C4Q8LxUydh1cqtf887b13L18oLqaFRVIk91g_use1ZI=442">
<span>
<strong>Inside OpenAI's in-house data agent (15 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
OpenAI built a bespoke internal AI data agent powered by GPT-5 that lets employees ask natural-language questions and get accurate, contextual data insights end to end, from table discovery to analysis and reporting. It combines code-aware data context, institutional knowledge, memory, and continuous evaluation to deliver fast, reliable analytics at OpenAI's scale.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fnetflixtechblog.com%2Fdata-bridge-how-netflix-simplifies-data-movement-36d10d91c313%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/k7fQrqBcPai5OVpIYyDRHqoF3dWyJGpu1Q4_NgoZO2Y=442">
<span>
<strong>Data Bridge: How Netflix simplifies data movement (10 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Netflix's Data Bridge unifies and abstracts batch data movement across more than three dozen source-destination pairs, eliminating fragmentation from bespoke tools. As a programmable control plane, it orchestrates ~300,000 jobs per week via a no-code/low-code interface, intent-based API, and YAML configs, centralizing metadata, governance, and job management. The platform's pluggable architecture streamlines connector contributions and enables seamless transitions to new data movement implementations.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2FLTvxJs/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/Oo9tTaW_sImEn2eO_6jwLrrSHlcFqsPzrT3VAoUV14Y=442">
<span>
<strong>Ads Candidate Generation using Behavioral Sequence Modeling (8 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Pinterest implemented advanced transformer-based behavioral sequence modeling for ad candidate generation, leveraging offsite user interaction data to predict both advertiser- and item-level conversion propensity. The two-tower model with in-batch negatives, log-Q bias correction, and ANN-based retrieval showed up to a 45% lift in user checkout performance and material reductions in CPA, surpassing pooling and static baselines.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Floglevelinfo.substack.com%2Fp%2Fhow-i-structure-my-data-pipelines-a20%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/4J9ZD7cnDd7Lr_-8s7xbJNve9jZLLCwpuYa6urWdmQs=442">
<span>
<strong>How I Structure My Data Pipelines: The Silver Layer (12 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
The Silver layer combines Medallion (Bronze-Silver-Gold) with Kimball dimensional modeling, serving as the core by organizing data into business-domain schemas with facts (granular events) and dimensions (attributes with surrogate keys), using intermediates for reusable transformations, and RLS/CLM access controls. This design ensures predictability, schema evolution, isolation of business logic in Silver, and composability.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Opinions & Advice</strong></h1>
</div>
</div>
</td>
</tr>
</tbody>
</table>
<table style="table-layout: fixed; width: 100%;" width="100%">
<tbody>
<tr>
<td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.louisbouchard.ai%2Fagents-and-workflows%2F%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/pUOurYBkPOt7Ry290eO3Xf5QXDp24DOjz8oHZHkR_lI=442">
<span>
<strong>Multi-agent is becoming the new overengineering (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Clear architectural distinctions between workflows, single-agent systems, and multi-agent systems are critical to avoiding overengineering and inefficiency in LLM-based solutions. Workflows excel for deterministic, sequential tasks with minimal overhead, while a single agent with fewer than 10β20 tools suits dynamic, tightly coupled processes where global context matters. Multi-agent architectures are warranted only for true parallelism, severe context overload, external modularity needs, or hard separation requirements, but they incur added complexity and coordination costs.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftowardsdatascience.com%2Foptimizing-vector-search-why-you-should-flatten-structured-data%2F%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/_ISxGUm_O8ET_SQ4ztWjkP9kE64UmHPoCXoSXgaCsM0=442">
<span>
<strong>Optimizing Vector Search: Why You Should Flatten Structured Data (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Flattening structured data into natural language before embedding can increase retrieval precision and recall by up to 20% in RAG systems. Embedding raw JSON introduces noise due to structural tokens that dilute semantic context, leading to subpar vector representations and degraded performance on vector searches. Flattening structured data reduces token count, enhances semantic clarity, and directly improves retrieval metrics.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Frobertsahlin.substack.com%2Fp%2Fwhy-the-future-of-data-platform-engineering%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/FAE3PlhoLzGrsf_Yi3ieR8dCsFE606B0erKZVZDUDp0=442">
<span>
<strong>Why the Future of Data Platform Engineering is Agent Experience (AX) (3 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Data platform engineering is shifting focus from human-centric Developer Experience (DX) to Agent Experience (AX), as AI agents increasingly manage coding and operations. Priorities now include headless, API-first architectures, machine-readable documentation, deterministic JSON-based communication, structured error hints for autonomous remediation, and universal integration standards. This pivot demands platforms that are programmatically navigable and self-explanatory to agents.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π»</span></div>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Launches & Tools</strong></h1>
</div>
</div>
</td>
</tr>
</tbody>
</table>
<table style="table-layout: fixed; width: 100%;" width="100%">
<tbody>
<tr>
<td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fhydrolix.io%2Fsolutions%2Fbot-insights%2F%3Futm_source=Newsletter%26utm_medium=Email%26utm_campaign=TLDR/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/s9LL88AOcerxFDkbJe42aB9x5TklZE6JMxv2t1ZpMxo=442">
<span>
<strong>The $5 million Bots bill (Sponsor)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Most web traffic is driven by bots, and it's crushing companies' budgets. (One client found Hydrolix after bot traffic bypassed their firewall, hit origin servers, and triggered >$5million overcharges.) Hydrolix accurately classifies human and bot traffic in real time, identifying good bots, AI scrapers, impersonators, emerging threats, etc - then mitigates them instantly. <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fhydrolix.io%2Fsolutions%2Fbot-insights%2F%3Futm_source=Newsletter%26utm_medium=Email%26utm_campaign=TLDR/2/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/QF-g0BsmWHUSUs4GLZTy_oaDxBFIDBCXMvbN7DmV8ko=442" rel="noopener noreferrer nofollow" target="_blank"><span>See how it works.</span></a>
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fcedardb.com%2Fblog%2Fstring_compression%2F%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/JmWMak2uASFRJ92cwk8VcGRuS6r49R6vuyN4JBm5dWo=442">
<span>
<strong>Efficient String Compression for Modern Database Systems (17 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
CedarDB introduced FSST string compression to significantly reduce text storage size while often improving query performance, especially for disk-bound workloads. By combining FSST with dictionary compression and careful cost heuristics, CedarDB achieves large space savings with measured performance trade-offs.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fgithub.com%2FDataDog%2Fpg_tracing%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/5VErDQCTgwdb-n00Pks7_ClaVrmGDxYk-KwrE7suiaw=442">
<span>
<strong>pg_tracing (GitHub Repo)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
pg_tracing is a PostgreSQL extension that adds server-side distributed tracing for queries and execution plans, exporting spans to OpenTelemetry via OTLP. It supports PostgreSQL 14β16 and can trace via SQL comments, GUCs, or sampling.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div></div>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><strong><h1>Miscellaneous</h1></strong></div>
</div>
</td>
</tr>
</tbody>
</table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%">
<tbody>
<tr>
<td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.infoq.com%2Farticles%2Fagent-reinforcement-learning-apache-spark%2F%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/ZQDymqFiYZYPhK6YqI-cFmGAKLOoJJ3GdXV05P0kFgE=442">
<span>
<strong>Autonomous Big Data Optimization: Multi-Agent Reinforcement Learning to Achieve Self-Tuning Apache Spark (19 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
A reinforcement learning (RL) agent can effectively automate configuration tuning for Apache Spark by dynamically adjusting parameters like shuffle partitions based on real-time dataset characteristics, outperforming both manual tuning and Spark's Adaptive Query Execution (AQE). Combining RL with AQE delivers optimal performance, cutting execution times and resource overhead. Scaling this approach via multi-agent systems enables simultaneous, domain-specialized optimization across memory, CPU, and caching.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fdropbox.tech%2Fmachine-learning%2Fvp-josh-clemm-knowledge-graphs-mcp-and-dspy-dash%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/y7lHD3CY3KKYuQIpeNm4Ii4EvEZw1OppyPMdaDWZygw=442">
<span>
<strong>Engineering VP Josh Clemm on How We Use Knowledge Graphs, MCP, and DSPy in Dash (8 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
By giving Dash access to proprietary work content, it unifies search, Q&A, and agentic tasks across Dropbox files and third-party apps. Dash ingests data via custom connectors, generates multimodal embeddings and knowledge graphs for entity relationships, and uses hybrid retrieval (BM25 + dense vectors) for fast retrieval. It optimizes MCP tool calling and tunes 30+ prompts (including LLM-as-judge) for better relevance, fewer disagreements, and easier model iteration.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ffoundationcapital.com%2Fcontext-graphs-one-month-in%2F%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/2dLATrS1QSZYfUHCuwqVm1sg6_10ELmInyx0rfFc9o0=442">
<span>
<strong>Context graphs, one month in (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Context graphs are emerging as a critical enterprise asset, capturing βdecision tracesβ to map not just what happened, but how and why decisions were made, enabling actionable institutional memory beyond traditional data recording. By stitching together cross-system workflows and exceptions in real time, context graphs create a proprietary, queryable layer of organizational reasoning, offering a competitive edge as models commoditize.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">β‘</span></div></div>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Quick Links</strong></h1>
</div>
</div>
</td>
</tr>
</tbody>
</table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%">
<tbody>
<tr>
<td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fappliedingenuity.substack.com%2Fp%2Fthe-llm-as-analyst-trap-a-technical%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/UHiwQtMPlG1d3oDqx8UkyPn5ZmD3DCw1yqiGceE1cn8=442">
<span>
<strong>The "LLM-as-Analyst" Trap: A Technical Deep-Dive into Agentic Data Systems (17 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
The common βLLM-as-Analystβ pattern is risky for data systems because it can silently hallucinate, miscompute, and produce unverifiable results while driving up cost and latency.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftrustedsec.com%2Fblog%2Fldap-channel-binding-and-ldap-signing%3Futm_source=tldrdata/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/avrY_YIPO5zqB5Oc1SKLTPr-kSmcGxsuFEJ4DRWv9WU=442">
<span>
<strong>LDAP Channel Binding and LDAP Signing (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Microsoft Server 2025 will enforce LDAP Signing by default, requiring digitally signed LDAP requests to strengthen Active Directory (AD) security and mitigate man-in-the-middle and replay attacks.
</span>
</span>
</div>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td align="left" style="word-break: break-word; vertical-align: top; padding: 5px 10px;">
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to advertise in TLDR? π°
</p>
<div class="text-block" style="margin-top: 10px;">
If your company is interested in reaching an audience of data engineering professionals and decision makers, you may want to <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%2F%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisecta/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/sX4kMUrEjaLIfTjB7Gdz7zjQQYyaxDvdhiqDrBrlebQ=442"><strong><span>advertise with us</span></strong></a>.
</div>
<br>
<!-- New "Want to work at TLDR?" section -->
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to work at TLDR? πΌ
</p>
<div class="text-block" style="margin-top: 10px;">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fjobs.ashbyhq.com%2Ftldr.tech/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/ZXx5jI0H13vA2xQ_41U8IooaTwcOYTc5OfjHwR-plS4=442" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>Apply here</strong></a>,
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fjobs.ashbyhq.com%2Ftldr.tech%2Fc227b917-a6a4-40ce-8950-d3e165357871/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/Z4I4uuWas8zAIwp9CJvc4ieBgs7aGSDL9Go-7cgWQow=442" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>create your own role</strong></a> or send a friend's resume to <a href="mailto:jobs@tldr.tech" style="color: #0000EE; text-decoration: underline;">jobs@tldr.tech</a> and get $1k if we hire them! TLDR is one of <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Ffeed%2Fupdate%2Furn:li:activity:7401699691039830016%2F/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/sxTxw0FPBy5-GEhGE1F12qT66uzmMa7fEv17661AjH4=442" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>Inc.'s Best Bootstrapped businesses</strong></a> of 2025.
</div>
<br>
<div class="text-block">
If you have any comments or feedback, just respond to this email!
<br>
<br> Thanks for reading,
<br>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjoelvanveluwen%2F/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/Ro7gX__rfrWTQpJgavrLtSlHOBnTT5Zmb5ku8Jcgbb0=442"><span>Joel Van Veluwen</span></a>, <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjennytzurueyching%2F/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/7fYiHXEPe4DZkIJrNCZsBeiSNVcPjANWZTF5tIiqbBM=442"><span>Tzu-Ruey Ching</span></a> & <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fremi-turpaud%2F/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/h1onqFu_tzPoGvtQjFYm8SdD62Az_Tvr_Ktg7uUH1cE=442"><span>Remi Turpaud</span></a>
<br>
<br>
</div>
<br>
</td>
</tr>
</tbody>
</table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%">
<tbody>
<tr>
<td class="container" style="padding: 15px 15px;">
<div class="text-block" id="testing-id">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%2Fmanage%3Femail=silk.theater.56%2540fwdnl.com/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/PfweGDQRGNx28HASU0hoUTG9U-6ehlN88DsbNoHlFPI=442">Manage your subscriptions</a> to our other newsletters on tech, startups, and programming. Or if TLDR Data isn't for you, please <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Funsubscribe%3Fep=1%26l=037ede50-92cc-11ee-b0f2-b761aa2217ad%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=e337959e-001d-11f1-a4b0-39464c22f659%26pt=campaign%26pv=4%26spa=1770030096%26t=1770030465%26s=11787aac5560204ab3394c490d1e449b10c1d80a41380e779af121b2e492bc72/1/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/G7TX5wr-TKHERmKWbYWTL80yDGTMKeTZM-J6IhdQiRs=442">unsubscribe</a>.
<br>
</div>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
</td>
</tr>
</tbody>
</table>
<img alt="" src="http://tracking.tldrnewsletter.com/CI0/0100019c1e098320-6d3d099e-05da-4ccc-b635-ece9522c8569-000000/CZuOL-a-XoVGwtG8Ze6pAoKXCOJEAL76ddMOFcJQ958=442" style="display: none; width: 1px; height: 1px;">
</body></html>