<!DOCTYPE html><html lang="en"><head><meta http-equiv="Content-Type" content="text/html charset=UTF-8"><meta charset="UTF-8"><meta name="viewport" content="width=device-width"><meta name="x-apple-disable-message-reformatting"><title>TLDR Data</title><meta name="color-scheme" content="light dark"><meta name="supported-color-schemes" content="light dark"><style type="text/css">
:root {
color-scheme: light dark; supported-color-schemes: light dark;
}
*,
*:after,
*:before {
-webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box;
}
* {
-ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%;
}
html,
body,
.document {
width: 100% !important; height: 100% !important; margin: 0; padding: 0;
}
body {
-webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; text-rendering: optimizeLegibility;
}
div[style*="margin: 16px 0"] {
margin: 0 !important;
}
table,
td {
mso-table-lspace: 0pt; mso-table-rspace: 0pt;
}
table {
border-spacing: 0; border-collapse: collapse; table-layout: fixed; margin: 0 auto;
}
img {
-ms-interpolation-mode: bicubic; max-width: 100%; border: 0;
}
*[x-apple-data-detectors] {
color: inherit !important; text-decoration: none !important;
}
.x-gmail-data-detectors,
.x-gmail-data-detectors *,
.aBn {
border-bottom: 0 !important; cursor: default !important;
}
.btn {
-webkit-transition: all 200ms ease; transition: all 200ms ease;
}
.btn:hover {
background-color: #f67575; border-color: #f67575;
}
* {
font-family: Arial, Helvetica, sans-serif; font-size: 18px;
}
@media screen and (max-width: 600px) {
.container {
width: 100%; margin: auto;
}
.stack {
display: block!important; width: 100%!important; max-width: 100%!important;
}
.btn {
display: block; width: 100%; text-align: center;
}
}
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
a {
color: inherit !important; text-decoration: underline !important;
}
</style><!--[if mso | ie]>
<style type="text/css">
a {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
a {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
</style>
<![endif]--></head><body class="">
<div style="display: none; max-height: 0px; overflow: hidden;">The core essence and challenges of data engineering remain unchanged despite decades of tool evolution from early ETL/SSIS in the 2000s β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β </div>
<div style="display: none; max-height: 0px; overflow: hidden;">
<br>
</div>
<table align="center" class="document"><tbody><tr><td valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" class="container" width="600"><tbody><tr class="inner-body"><td>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr class="header"><td bgcolor="" class="container">
<table width="100%"><tbody><tr><td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" style="margin-top: 0px;" width="100%"><tbody><tr><td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div style="text-align: center;">
<span style="margin-right: 0px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/nwWaTaMuAKBdvQYkxf_HydSbX818DLFTpqU8dNf3eqQ=440" rel="noopener noreferrer" target="_blank"><span>Sign Up</span></a>
|<span style="margin-right: 2px; margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisetopnav/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/1QsJJwUn-wxowtkl1yzi8D0NehgNaPwhnAjSZSpIeE0=440" rel="noopener noreferrer" target="_blank"><span>Advertise</span></a></span>|<span style="margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Fweb-version%3Fep=1%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=dae67524-f1f2-11f0-b81e-55cf3adccc2c%26pt=campaign%26t=1768475260%26s=6e3b0b675e36b645a13899a3818fbf9f40010e871440dc71c0490e259125d22c/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/E-Naed8GN-Kt3Ugy2_c98JmxZNDfE59NgzFFAFA4mfs=440"><span>View Online</span></a></span>
<br>
</span></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="text-align: center;"><span data-darkreader-inline-color="" style="--darkreader-inline-color:#3db3ff; color: rgb(51, 175, 255) !important; font-size: 30px;">T</span><span style="font-size: 30px;"><span data-darkreader-inline-color="" style="color: rgb(232, 192, 96) !important; --darkreader-inline-color:#e8c163; font-size:30px;">L</span><span data-darkreader-inline-color="" style="color: rgb(101, 195, 173) !important; --darkreader-inline-color:#6ec7b2; font-size:30px;">D</span></span><span data-darkreader-inline-color="" style="--darkreader-inline-color:#dd6e6e; color: rgb(220, 107, 107) !important; font-size: 30px;">R</span>
<br>
</td></tr></tbody></table>
<br>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody></tbody></table>
<table style="table-layout: fixed; width:100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;">
<div style="text-align: center;">
<h1><strong>TLDR Data <span id="date">2026-01-15</span></strong></h1>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width:100%;" width="100%"><tbody></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr>
<tr bgcolor=""><td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π±</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Deep Dives</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.uber.com%2Fblog%2Ffrom-static-rate-limiting-to-intelligent-load-management%2F%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/uK1Ca_V3-uC9NpEBMikTjHwCBMqq7lDZZjYlY1moXGI=440">
<span>
<strong>How Uber Conquered Database Overload: The Journey from Static Rate-Limiting to Intelligent Load Management (12 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Uber replaced static rate limiting with Cinnamon, an intelligent load management system embedded in its storage layer. It used concurrency-based detection, priority queues (t0βt5), pluggable regulators, and PID auto-tuning to dynamically shed load and adjust timeouts. This achieved 80% higher throughput, ~70% lower P99 latency, and ~93% fewer peak goroutines.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Feng.lyft.com%2Flyfts-feature-store-architecture-optimization-and-evolution-7835f8962b99%3Fgi=19d0125dd862%26utm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/ivpbM43bl6cseHfDCT2ER8SybV3HJ2LHpF-_ZCf2jl0=440">
<span>
<strong>Lyft's Feature Store: Architecture, Optimization, and Evolution (11 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Lyft's Feature Store computes batch features daily via Spark SQL/Hive, serves online features through DynamoDB primary store + Valkey caching + OpenSearch for embeddings, and streams features processed in real-time with Apache Flink from Kafka/Kinesis. Evolutions include migration to Astronomer for orchestration, data contracts for quality/freshness, and improved discoverability via Amundsen.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2FjwO8L4/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/Hj7eTwlCMZxPi0aPeQ7Bcr_PS8GPxvFjf2c0mdw1Lh8=440">
<span>
<strong>Zeta's Lakehouse Journey: A Composable, Scalable, and Federated Architecture (5 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Zeta built a composable, scalable, and federated Lakehouse architecture with Apache Iceberg on S3Table/AWS Glue Catalog and a multi-account federated setup to unify heterogeneous data from acquisitions, enable secure cross-team access without duplication, support diverse compute engines (Spark, Snowflake, ClickHouse, and Trino) for AI/marketing workloads, and ensure governance, schema evolution, and vendor independence.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2F0Ozcxj/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/E5U6X6LfW1DX1HyNgAkKW9fG435Y4FHYhQip8WVlUUM=440">
<span>
<strong>Building a Global, Event-Driven Platform: Our Ongoing Journey, Part 2 (5 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Vinted built a global, event-driven platform by centralizing all writes in a single primary region to maintain a consistent source of truth, replicating read-optimized projections to edge regions for fast local access, embracing eventual consistency with idempotent and out-of-order-tolerant event handling, shifting teams to own domain-specific asynchronous projections (such as for feeds and search), and avoiding multi-region sharding complexity.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div>
</div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Opinions & Advice</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.ssp.sh%2Fblog%2Fdiary-of-a-data-engineer%2F%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/Ihporv_fAPcUOULv0bqU4fl8U5wTMRgkwWT1YfW0ZKU=440">
<span>
<strong>A Diary of a Data Engineer (14 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
The core essence and challenges of data engineering remain unchanged despite decades of tool evolution from early ETL/SSIS in the 2000s, through Hadoop/big data hype, to modern stacks like dbt, Iceberg, and AI agents in 2026. Key insights include the eternal loop ("The tools change. The loop doesn't."), the lost art of proper data modeling, treating schema issues as people problems, and focusing on fundamentals over trends.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftowardsdatascience.com%2Fwhy-90-accuracy-in-text-to-sql-is-100-useless%2F%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/pccknssQ3Fti-I8VF0QKhUD6Nqo_tyz63cayS1kj1uY=440">
<span>
<strong>Why 90% Accuracy in Text-to-SQL is 100% Useless (9 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Text-to-SQL solutions powered by LLMs hold immense potential for self-service analytics, but enterprise adoption hinges on 100% accuracy, as any hallucination or error erodes trust and adoption. Even leading integrated platforms such as BigQuery critically lack evaluation capability and fail to solve the accuracy problem, creating real risk, as inefficient SQL can trigger extreme runaway query costs. Outdated benchmarking misrepresents real-world readiness.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fhackernoon.com%2Fzero-trust-data-access-for-ai-training-new-architecture-patterns-for-cloud-and-on-prem-workloads%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/AwoQPGjW99aBGMe2Sg_ab0uEfyz9V0MN_Q35M9_5mvU=440">
<span>
<strong>Zero-Trust Data Access for AI Training: New Architecture Patterns for Cloud and On-Prem Workloads (6 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Zero-trust data access models are crucial for securing sensitive, fragmented data powering modern AI workloads across hybrid, cloud, and edge environments. By using workload identities, metadata-driven policies, and continuous verification, zero-trust enables fine-grained, context-aware control over data access (even during processing). Organizations deploying zero-trust reported $1.76 million lower average breach costs.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π»</span></div>
</div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Launches & Tools</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fgo.fivetran.com%2Fsignups%2Fsmb%3Futm_source=TLDR%2520data%26utm_medium=sponsored-ad%26utm_campaign=SC-PLG-brand%2520Q4%26utm_content=46037/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/0YL1t6GSj7R2knfjXhhCHpEFyMfsc9ZykNMEJWe1hGA=440">
<span>
<strong>Connect your first data source in <10 minutes with 700+ prebuilt connectors from Fivetran (Sponsor)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Working with an ever-growing set of data sources that don't talk to one another? Spend your time on something other than wrangling APIs. <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fgo.fivetran.com%2Fsignups%2Fsmb%3Futm_source=TLDR%2520data%26utm_medium=sponsored-ad%26utm_campaign=SC-PLG-brand%2520Q4%26utm_content=46037/2/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/3Lqb4KSAT32LgxEKsxFuWrlZd2XfEhk6_lXFftj2LY8=440" rel="noopener noreferrer nofollow" target="_blank"><span>Fivetran's</span></a> free trial includes over 700 connectors, allowing you to replace manual integrations with zero-maintenance data automation. <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fgo.fivetran.com%2Fsignups%2Fsmb%3Futm_source=TLDR%2520data%26utm_medium=sponsored-ad%26utm_campaign=SC-PLG-brand%2520Q4%26utm_content=46037/3/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/y1BlWRTVUAgnTBeeDcZ1edQBBDSwI6dEkPH6w9HiXvY=440" rel="noopener noreferrer nofollow" target="_blank"><span>Try it today</span></a> β <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fgo.fivetran.com%2Fsignups%2Fsmb%3Futm_source=TLDR%2520data%26utm_medium=sponsored-ad%26utm_campaign=SC-PLG-brand%2520Q4%26utm_content=46037/4/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/xqU12AnS4QIa4HFf-zcLfJSShYqhKbQHppVjNri0wOY=440" rel="noopener noreferrer nofollow" target="_blank"><span>no credit card needed</span></a>.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.dataengineeringpodcast.com%2Ffenic-ai-dataframe-episode-496%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/xgyXOmpahl3_WhvsoggsgzFYYqKtXqVmEMQwpyMI02Q=440">
<span>
<strong>Semantic Operators Meet Dataframes: Building Context for Agents with FENIC (56 minute podcast)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
FENIC is a DataFrame-style engine that treats LLM calls like built-in operators, so it can optimize, throttle, and reduce cost for AI-heavy pipelines. It uses LLMs to turn messy text into structured data, making downstream processing reliable, reproducible, and usable as governed tools that agents can safely call.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fyonoo.ai%2F%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/LI-QnCZUgL6vFmUjclmCTiNs4lOh6zbpGjk-RSpUWsA=440">
<span>
<strong>Yonoo (Tool)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Yonoo is the unified, single-subscription solution to access eight leading frontier AI models (ChatGPT, Claude, Gemini, Grok, Perplexity, DeepSeek, and Llama) through one interface. It uses intelligent routing to send each query to the most suitable model, eliminating the need for separate subscriptions, app-switching, and fragmented AI usage.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2FwP4qC1/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/EqqXuxBvlB50Eq08PkjZ4hMNbhVYOqJhi-COt79x6vc=440">
<span>
<strong>AutoRAG: The End of Guesswork in Retrieval-Augmented Generation (9 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
AutoRAG is a system that automatically tests and tunes different RAG pipeline setups to find what works best for each task. Instead of hand-tuning chunking, retrieval, reranking, and prompts, you define the evaluation metric and let it optimize the pipeline end-to-end.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><strong><h1>Miscellaneous</h1></strong></div>
</div>
</td></tr></tbody></table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2F6Ae4Dh/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/mBN-OIt-hVdACaWL9CC2SDUVSdW_6i75N1dqUEwjKa8=440">
<span>
<strong>The new observability stack war in 2026 (5 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Observability and infrastructure are converging as infra vendors aggressively move into the observability stack, targeting control over the telemetry data plane and agent-layer budgets. The combination of OpenTelemetry for ingest and Apache Iceberg for an open, portable storage layer is emerging as the new standard, which is motivated by cost control, data portability, and AI-driven parallel investigations that strain proprietary systems. Efficient write paths remain a key challenge. Streaming engines like RisingWave are positioned to address issues like small files and schema drift at scale.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fthenewaiorder.substack.com%2Fp%2Fi-tested-14-analytics-agents-so-you%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/9yEIqOxu2V3FKPD4tUYE2m4gOBA_lW_8gOfhM2pP6Ic=440">
<span>
<strong>I tested 14 analytics agents - so you don't have to (15 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
A 2026 benchmark of 14 agentic analytics tools tested reliability, UX, speed, and cost on real production data. The conclusion is that AI-native BI tools currently offer the best overall experience, but at the expense of higher cost and migration effort.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">β‘</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Quick Links</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fai.meta.com%2Fblog%2Fsegment-anything-model-3%2F%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/Z1MghSFIPK6TDedhZIyQlKPT5KCA7xj_X-EbdKYRvto=440">
<span>
<strong>Introducing Meta Segment Anything Model 3 and Segment Anything Playground (9 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Meta's Segment Anything Model 3 (SAM 3) introduces promptable concept segmentation via text and exemplar prompts, enabling state-of-the-art detection, segmentation, and tracking of any visual concept across images and video.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flevelup.gitconnected.com%2Fbuilding-a-containerized-ml-inference-service-with-automated-ci-cd-1e987e8d5dfa%3Futm_source=tldrdata/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/G1m8VsHFxqRrTYL9CN12m0i0kzEoriwdIKzVzoq8hlk=440">
<span>
<strong>Building a Containerized ML Inference Service with Automated CI/CD (2 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Step-by-step template to deploy a Dockerized DistilGPT2 with security scans and GitHub Actions in under 20 minutes.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td align="left" style="word-break: break-word; vertical-align: top; padding: 5px 10px;">
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to advertise in TLDR? π°
</p>
<div class="text-block" style="margin-top: 10px;">
If your company is interested in reaching an audience of data engineering professionals and decision makers, you may want to <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%2F%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisecta/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/Gp0OUcErqDMoGgsSlDtb89VLasmnlS-w1UaWtQ9Prq0=440"><strong><span>advertise with us</span></strong></a>.
</div>
<br>
<!-- New "Want to work at TLDR?" section -->
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to work at TLDR? πΌ
</p>
<div class="text-block" style="margin-top: 10px;">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fjobs.ashbyhq.com%2Ftldr.tech/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/01lUHA-abv45r05UIzQFsIuBkn76ziGpR_wGbsIf5Fc=440" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>Apply here</strong></a>,
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fjobs.ashbyhq.com%2Ftldr.tech%2Fc227b917-a6a4-40ce-8950-d3e165357871/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/0jMJBiSzOjZdHCyZN-QwkjMzDDDCdFrxxLUv4820BLg=440" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>create your own role</strong></a> or send a friend's resume to <a href="mailto:jobs@tldr.tech" style="color: #0000EE; text-decoration: underline;">jobs@tldr.tech</a> and get $1k if we hire them! TLDR is one of <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Ffeed%2Fupdate%2Furn:li:activity:7401699691039830016%2F/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/tqLTuPAsagkOPjHOz-LUwgOwY_S5pj_Adl9PoVogzhQ=440" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>Inc.'s Best Bootstrapped businesses</strong></a> of 2025.
</div>
<br>
<div class="text-block">
If you have any comments or feedback, just respond to this email!
<br>
<br> Thanks for reading,
<br>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjoelvanveluwen%2F/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/FDdCFzz4m-D0Q46ZmrJPdcS3tBbRPF-U4AXNGaK673I=440"><span>Joel Van Veluwen</span></a>, <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjennytzurueyching%2F/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/KZBq-bUmmxTKfyscWXxLFKzEMVcbdCGqqWFpcra98-k=440"><span>Tzu-Ruey Ching</span></a> & <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fremi-turpaud%2F/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/ccz1ILhzya2FM6AuXhf_Qn4G2sPOxwONXFCl4JLXtOY=440"><span>Remi Turpaud</span></a>
<br>
<br>
</div>
<br>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block" id="testing-id">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%2Fmanage%3Femail=silk.theater.56%2540fwdnl.com/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/dsVhXFoJ16whoQ05gsMH25TFH2zsPXh3Irxt9xFdfBQ=440">Manage your subscriptions</a> to our other newsletters on tech, startups, and programming. Or if TLDR Data isn't for you, please <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Funsubscribe%3Fep=1%26l=037ede50-92cc-11ee-b0f2-b761aa2217ad%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=dae67524-f1f2-11f0-b81e-55cf3adccc2c%26pt=campaign%26pv=4%26spa=1768474895%26t=1768475260%26s=aa66aa171003a9208d027ce2edba79cdd53a2ad8201abb77f680232ed717d559/1/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/82bFe-qoYCp3Dk26Ywi9M8d2qyDQyMXsiJYPIJ4FX1c=440">unsubscribe</a>.
<br>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
<img alt="" src="http://tracking.tldrnewsletter.com/CI0/0100019bc156f6ac-764a8588-a8f0-42dd-9441-9c8c96d52e81-000000/ganCo7lzf2C75JrW1X7FpHfGykx-GUUc7-4nFRkRgN4=440" style="display: none; width: 1px; height: 1px;">
</body></html>