<!DOCTYPE html><html lang="en"><head><meta http-equiv="Content-Type" content="text/html charset=UTF-8"><meta charset="UTF-8"><meta name="viewport" content="width=device-width"><meta name="x-apple-disable-message-reformatting"><title>TLDR Data</title><meta name="color-scheme" content="light dark"><meta name="supported-color-schemes" content="light dark"><style type="text/css">
:root {
color-scheme: light dark; supported-color-schemes: light dark;
}
*,
*:after,
*:before {
-webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box;
}
* {
-ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%;
}
html,
body,
.document {
width: 100% !important; height: 100% !important; margin: 0; padding: 0;
}
body {
-webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; text-rendering: optimizeLegibility;
}
div[style*="margin: 16px 0"] {
margin: 0 !important;
}
table,
td {
mso-table-lspace: 0pt; mso-table-rspace: 0pt;
}
table {
border-spacing: 0; border-collapse: collapse; table-layout: fixed; margin: 0 auto;
}
img {
-ms-interpolation-mode: bicubic; max-width: 100%; border: 0;
}
*[x-apple-data-detectors] {
color: inherit !important; text-decoration: none !important;
}
.x-gmail-data-detectors,
.x-gmail-data-detectors *,
.aBn {
border-bottom: 0 !important; cursor: default !important;
}
.btn {
-webkit-transition: all 200ms ease; transition: all 200ms ease;
}
.btn:hover {
background-color: #f67575; border-color: #f67575;
}
* {
font-family: Arial, Helvetica, sans-serif; font-size: 18px;
}
@media screen and (max-width: 600px) {
.container {
width: 100%; margin: auto;
}
.stack {
display: block!important; width: 100%!important; max-width: 100%!important;
}
.btn {
display: block; width: 100%; text-align: center;
}
}
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
a {
color: inherit !important; text-decoration: underline !important;
}
</style><!--[if mso | ie]>
<style type="text/css">
a {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
a {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
</style>
<![endif]--></head><body class="">
<div style="display: none; max-height: 0px; overflow: hidden;">Git-like workflows for data, enabled by tools like LakeFS, Nessie, and Tigris, introduce instant branching, zero-copy cloning, and robust rollback β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β </div>
<div style="display: none; max-height: 0px; overflow: hidden;">
<br>
</div>
<table align="center" class="document"><tbody><tr><td valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" class="container" width="600"><tbody><tr class="inner-body"><td>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr class="header"><td bgcolor="" class="container">
<table width="100%"><tbody><tr><td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" style="margin-top: 0px;" width="100%"><tbody><tr><td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div style="text-align: center;">
<span style="margin-right: 0px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/AtrYChcA9LsqEu1jjGwonaxvu5SXgS2QEovN_SHik14=433" rel="noopener noreferrer" target="_blank"><span>Sign Up</span></a>
|<span style="margin-right: 2px; margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisetopnav/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/wn1t7-lzsLT3kSNYTudybLaG2GUtjdMqn3atOZENrSM=433" rel="noopener noreferrer" target="_blank"><span>Advertise</span></a></span>|<span style="margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Fweb-version%3Fep=1%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=fdb2a1c0-cb48-11f0-b8a6-43888e67034a%26pt=campaign%26t=1764241615%26s=909924f6fd76f14a143e9b9fbabe223940fa91e5cfff4f9392a2eea0c2179606/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/sB1YS5aEIsXkZch0-wjIqj0aN8w7vbuRM97Q_NrNjl0=433"><span>View Online</span></a></span>
<br>
</span></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="text-align: center;"><span data-darkreader-inline-color="" style="--darkreader-inline-color:#3db3ff; color: rgb(51, 175, 255) !important; font-size: 30px;">T</span><span style="font-size: 30px;"><span data-darkreader-inline-color="" style="color: rgb(232, 192, 96) !important; --darkreader-inline-color:#e8c163; font-size:30px;">L</span><span data-darkreader-inline-color="" style="color: rgb(101, 195, 173) !important; --darkreader-inline-color:#6ec7b2; font-size:30px;">D</span></span><span data-darkreader-inline-color="" style="--darkreader-inline-color:#dd6e6e; color: rgb(220, 107, 107) !important; font-size: 30px;">R</span>
<br>
</td></tr></tbody></table>
<br>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody></tbody></table>
<table style="table-layout: fixed; width:100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;">
<div style="text-align: center;">
<h1><strong>TLDR Data <span id="date">2025-11-27</span></strong></h1>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width:100%;" width="100%"><tbody></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr>
<tr bgcolor=""><td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π±</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Deep Dives</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fhuggingface.co%2Fblog%2Fcontinuous_batching%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/sDnn54kex7qeXrYu0_oH2Io5iJaFaB-RFbb6Q5yZdWQ=433">
<span>
<strong>Continuous batching from first principles (12 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Continuous Batching enables LLM inference engines to dynamically mix and match live requests at the token-generation level, letting finished sequences exit and new ones join, keeping GPUs fully utilized. This yields dramatic gains: much higher throughput, lower latency, and better memory efficiency, especially under high-load or variable-length workloads. In real-world deployments, it turns many GPUs into high-throughput, low-cost LLM servers rather than idle resources.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fsemyonsinchenko.github.io%2Fssinchenko%2Fpost%2Fdatafusion-graphs-cc%2F%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/Yjpq0NfhFAoKUyaYiS-n-Wd5RCBb0HyxkAuYDai6y2w=433">
<span>
<strong>Graphs, Algorithms, and My First Impression of DataFusion (19 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Implementing the two-phase "big-star/small-star" connected components algorithm in Apache DataFusion delivers 4-5x faster performance and half the memory footprint compared to Spark GraphFrames on in-memory graph workloads. DataFusion's Rust-based architecture provides superior UDF performance, robust SQL/DataFrame tools, and efficient I/O, but lacks distributed execution and disk persistence for iterative algorithms. These constraints limit scalability for large-scale or out-of-core graph processing. DataFusion excels for high-performance, in-memory, and developer-friendly graph analytics on medium-sized data sets.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fblog.bytebytego.com%2Fp%2Fhow-zalando-delivers-real-time-insights%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/4aVN17m6pcuJKOE4ghyMMKqcB6qUz7bPm2R6UG0HX4o=433">
<span>
<strong>How Zalando Delivers Real-Time Insights to Its Partners Brands (16 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Zalando replaced slow, manual data exports with Delta Sharing, giving thousands of partner brands secure, real-time, zero-copy access to governed Delta Tables, so no ETL or data duplication is required. This eliminated ~1.5 FTEs of monthly manual work per partner, slashed onboarding time to minutes, and enabled everyone from small retailers using Excel to large brands using Spark to instantly query fresh, TB-scale data with full history and strict governance.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2FDrzoZ0/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/0RtuvpFxzLqS8DUi-mOtPqXUNrB2soYsJQI9JZQonso=433">
<span>
<strong>Reducing Experiment Duration with Predicted Control Variates (8 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Etsy reduced A/B test duration by up to 50% by introducing Predicted Control Variates (PCV), a statistical technique that uses pre-experiment user features to predict each user's counterfactual control-metric behavior and then subtract that prediction from the observed treatment metric as a powerful noise-reduction covariate.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div>
</div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Opinions & Advice</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fhackernoon.com%2Fstop-hacking-sql-how-to-build-a-scalable-query-automation-system%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/WQsz1ANFaepa1vr7DXsBXze2cSIA4TSACOb8MNT9YJ8=433">
<span>
<strong>Stop Hacking SQL: How to Build a Scalable Query Automation System (9 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
A robust SQL automation system needs to treat queries as code, not UI clicks or ad-hoc scripts. Data engineers should move to spec-driven jobs in Git with templates, validation, dry-runs, cost limits, and CI-based deployment, which eliminate silent failures, copy-paste drift, and runaway spend. Adding structured logs and metrics makes jobs observable, predictable, and far easier to maintain at scale.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fmotherduck.com%2Fblog%2Fgit-for-data-part-1%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/VixYnxqSdAw3Lu2_4esktRxaaVIYWjEaQ0kw3Ue1N0A=433">
<span>
<strong>Branch, Test, Deploy: A Git-Inspired Approach for Data (12 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Git-like workflows for data, enabled by tools like LakeFS, Nessie, and Tigris, introduce instant branching, zero-copy cloning, robust rollback, and atomic snapshots across massive data sets without physical duplication. By leveraging metadata-driven approaches, data engineers can test, revert, and parallelize changes on production-scale data with minimal overhead, eliminating slow manual copies. This paradigm dramatically accelerates CICD cycles and simplifies complex rollback scenarios.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fvinvashishta.substack.com%2Fp%2Fwhy-most-enterprise-ontologies-and%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/gqDllEYwCN5mzXx7vcfMfWWQ4rvcLq4IbNs6yuL8xm4=433">
<span>
<strong>Why Most Enterprise Ontologies & Knowledge Graphs Fail (6 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Enterprise knowledge graphs and ontologies face an unavoidable challenge: consensus, stability, completeness, and transparency are all unattainable at scale. Effective solutions require dynamic reconciliation algorithms, adaptive models for ongoing change, mechanisms for continuous learning and expansion, and trust management even without full data visibility. Building enterprise knowledge graphs requires embracing these realities to ensure alignment with the complex, distributed nature of real-world organizations.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.morling.dev%2Fblog%2Fon-idempotency-keys%2F%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/T9YJ3aUNFErRi-AQ84LCqbF49NwDJJINlfl2ZhMlAyw=433">
<span>
<strong>On Idempotency Keys (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Idempotency keys enable exact-once processing in distributed systems by letting consumers detect and skip duplicate messages from at-least-once deliveries, using atomic persistence to make retries safe. Common approaches include random or time-based UUIDs for simplicity, monotonic sequences or database WAL positions (via CDC) for storage efficiency and natural ordering. The best choice depends on scale, concurrency needs, and operational complexity.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π»</span></div>
</div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Launches & Tools</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fhudi.apache.org%2Fblog%2F2025%2F11%2F25%2Fapache-hudi-release-1-1-announcement%2F%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/jza7HU0wO7eJEejdn6O1Nz0lwxAdAWciZ1W5KCz_T_0=433">
<span>
<strong>Apache Hudi 1.1 is HereβBuilding the Foundation for the Next Generation of Lakehouse (15 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Apache Hudi 1.1 introduces a pluggable table format framework with Iceberg/Delta adapters, partition-aware indexing, dynamic bucket sizing, storage-based locking, and major engine-specific boosts. It delivers up to 15x faster clustering speed, 4x faster lookups, and 2β3x higher Flink throughput through zero-copy processing and optimized metadata handling.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Flinks.tldrnewsletter.com%2FkAIQcQ/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/umWvkHP_Hi-BbxT9CMTciNBOWc2ZK0VEHFJgxRjV4Co=433">
<span>
<strong>Super fast aggregations in PostgreSQL 19 (4 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
PostgreSQL 19 introduces a major query optimizer enhancement that allows the engine to aggregate data before joining reference tables, significantly accelerating aggregation queries, especially when dealing with large fact tables and small lookup tables. Early benchmarks show up to a 5x speed increase, all without code or configuration changes required. This optimization boosts performance for common GROUP BY operations.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><strong><h1>Miscellaneous</h1></strong></div>
</div>
</td></tr></tbody></table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.uber.com%2Fblog%2Fevolution-and-scale-of-ubers-delivery-search-platform%2F%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/IHiVi1AEe5tiZ22x8OoHrkZ2KLv0BCXjkWMDMKTcce8=433">
<span>
<strong>Evolution and Scale of Uber's Delivery Search Platform (9 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Uber's semantic search platform leverages a Qwen-based two-tower DNN with Matryoshka Representation Learning (MRL) for flexible embedding sizes, scalar quantization (int7), and shard-level K tuning, combined with locale-aware lexical fields, pre-filters, ANN search in Lucene, and lightweight neural re-ranking. These innovations deliver >50% latency reduction, ~50% storage savings, 34% lower latency from K-tuning, and sustained >0.95 recall, while biweekly automated index refreshes keep results fresh.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Faiven.io%2Fblog%2Fbuilding-agentic-rag-with-postgresql-and-n8n%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/yWkI44DdPp_ho_ALRtpuDnk7rz6E_A1WVOkFOrZm1sc=433">
<span>
<strong>Building agentic RAG with PostgreSQL and n8n (4 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Agentic RAG transforms traditional linear retrieval-augmented generation pipelines by implementing a reasoning loop, enabling AI agents to dynamically choose between SQL queries and vector searches in PostgreSQL via n8n orchestration. You can consolidate chat memory, vector storage, and business data within a single Postgres instance to eliminate infrastructure complexity typical of multi-database setups.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">β‘</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Quick Links</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.infoq.com%2Fnews%2F2025%2F11%2Fstripe-zero-downtime-date-move%2F%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/4vqCrGHkih8MTn5Q2pJP5pihIOPkYb61ufJImTNCSX0=433">
<span>
<strong>Stripe's Zero-Downtime Data Movement Platform Migrates Petabytes with Millisecond Traffic Switches (3 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Stripe's Zero-Downtime Data Movement Platform enables petabyte-scale database migrations with traffic cutovers as fast as milliseconds.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.infoq.com%2Fnews%2F2025%2F11%2Fcloudflare-global-outage-cause%2F%3Futm_source=tldrdata/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/rZiZoawsjnxiWrubTCS7LHzrfFKC9lZLqCE-CquYRmE=433">
<span>
<strong>Cloudflare Global Outage Traced to Internal Database Change (3 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
A minor ClickHouse permission tweak cascaded into a global CDN failure.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td align="left" style="word-break: break-word; vertical-align: top; padding: 5px 10px;">
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to advertise in TLDR? π°
</p>
<div class="text-block" style="margin-top: 10px;">
If your company is interested in reaching an audience of data engineering professionals and decision makers, you may want to <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%2F%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisecta/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/iXsnxb1jLglp6goFZJwMqvlrT71xmbIjFBrIEUQHG6A=433"><strong><span>advertise with us</span></strong></a>.
</div>
<br>
<!-- New "Want to work at TLDR?" section -->
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to work at TLDR? πΌ
</p>
<div class="text-block" style="margin-top: 10px;">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fjobs.ashbyhq.com%2Ftldr.tech/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/8Qim7aEZY9_gcxS-X7KrlWFYFrHppjpEroGYEwGqHyo=433" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>Apply here</strong></a> or send a friend's resume to <a href="mailto:jobs@tldr.tech" style="color: #0000EE; text-decoration: underline;">jobs@tldr.tech</a> and get $1k if we hire them!
</div>
<br>
<div class="text-block">
If you have any comments or feedback, just respond to this email!
<br>
<br> Thanks for reading,
<br>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjoelvanveluwen%2F/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/2VIK-DSUUDToWR-AKX9pZg1OVJ8UjTpcagsJCrSmqpw=433"><span>Joel Van Veluwen</span></a>, <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjennytzurueyching%2F/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/2ir7LxBwZnCff_NYhWgaYIP0--s0t-NAnjeRs4DWeNk=433"><span>Tzu-Ruey Ching</span></a> & <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fremi-turpaud%2F/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/Ef_WGZjJgENjWXvE_p6IbSd4RH2rcQ24yTQxP9N8UMc=433"><span>Remi Turpaud</span></a>
<br>
<br>
</div>
<br>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block" id="testing-id">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%2Fmanage%3Femail=silk.theater.56%2540fwdnl.com/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/LzcS9ekeHuOZLXK9VU5u2cjH1fRztY3Q8BT-UBnQBFQ=433">Manage your subscriptions</a> to our other newsletters on tech, startups, and programming. Or if TLDR Data isn't for you, please <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Funsubscribe%3Fep=1%26l=037ede50-92cc-11ee-b0f2-b761aa2217ad%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=fdb2a1c0-cb48-11f0-b8a6-43888e67034a%26pt=campaign%26pv=4%26spa=1764241285%26t=1764241615%26s=ea094616f0e153595ac971959bc91637738ae93a297e422c61d24349be304202/1/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/lg0ewTX7dm6e6bNnXD6xNQjAHVD5nt2NQpObYbWeFRE=433">unsubscribe</a>.
<br>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
<img alt="" src="http://tracking.tldrnewsletter.com/CI0/0100019ac4fea8d7-4dab2a4c-7d0b-448b-807f-50ec2ae085bf-000000/djzNzfDlhoItHkzp6UaZFcuVP2xwXhdky6XeWUOH5iI=433" style="display: none; width: 1px; height: 1px;">
</body></html>