<!DOCTYPE html><html lang="en"><head><meta http-equiv="Content-Type" content="text/html charset=UTF-8"><meta charset="UTF-8"><meta name="viewport" content="width=device-width"><meta name="x-apple-disable-message-reformatting"><title>TLDR Data</title><meta name="color-scheme" content="light dark"><meta name="supported-color-schemes" content="light dark"><style type="text/css">
:root {
color-scheme: light dark; supported-color-schemes: light dark;
}
*,
*:after,
*:before {
-webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box;
}
* {
-ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%;
}
html,
body,
.document {
width: 100% !important; height: 100% !important; margin: 0; padding: 0;
}
body {
-webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; text-rendering: optimizeLegibility;
}
div[style*="margin: 16px 0"] {
margin: 0 !important;
}
table,
td {
mso-table-lspace: 0pt; mso-table-rspace: 0pt;
}
table {
border-spacing: 0; border-collapse: collapse; table-layout: fixed; margin: 0 auto;
}
img {
-ms-interpolation-mode: bicubic; max-width: 100%; border: 0;
}
*[x-apple-data-detectors] {
color: inherit !important; text-decoration: none !important;
}
.x-gmail-data-detectors,
.x-gmail-data-detectors *,
.aBn {
border-bottom: 0 !important; cursor: default !important;
}
.btn {
-webkit-transition: all 200ms ease; transition: all 200ms ease;
}
.btn:hover {
background-color: #f67575; border-color: #f67575;
}
* {
font-family: Arial, Helvetica, sans-serif; font-size: 18px;
}
@media screen and (max-width: 600px) {
.container {
width: 100%; margin: auto;
}
.stack {
display: block!important; width: 100%!important; max-width: 100%!important;
}
.btn {
display: block; width: 100%; text-align: center;
}
}
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
a {
color: inherit !important; text-decoration: underline !important;
}
</style><!--[if mso | ie]>
<style type="text/css">
a {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
a {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
</style>
<![endif]--></head><body class="">
<div style="display: none; max-height: 0px; overflow: hidden;">GROUP BY ALL is a new SQL feature that automatically groups by all non-aggregate expressions in the SELECT list, removing the need to repeat columns β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β </div>
<div style="display: none; max-height: 0px; overflow: hidden;">
<br>
</div>
<table align="center" class="document"><tbody><tr><td valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" class="container" width="600"><tbody><tr class="inner-body"><td>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr class="header"><td bgcolor="" class="container">
<table width="100%"><tbody><tr><td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" style="margin-top: 0px;" width="100%"><tbody><tr><td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div style="text-align: center;">
<span style="margin-right: 0px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/spD0KA9lme12idXm8IJ8UGN6_nAzzPGn-lzHS8akbcM=431" rel="noopener noreferrer" target="_blank"><span>Sign Up</span></a>
|<span style="margin-right: 2px; margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisetopnav/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/4qlWKD_4yHW0Ulv54Vunau4kmpZ75nhP8Sp08L44fxM=431" rel="noopener noreferrer" target="_blank"><span>Advertise</span></a></span>|<span style="margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Fweb-version%3Fep=1%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=8feee390-c370-11f0-8152-edea959ee060%26pt=campaign%26t=1763377606%26s=15c775703f5473e0800f0e97cedeb66c4f561cf68a3e1db9fe18c8d34244c1a8/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/BdO1mxtRqMLdU4iEkDktVkODxWs5HiZsoF1tj3mSwcA=431"><span>View Online</span></a></span>
<br>
</span></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="text-align: center;"><span data-darkreader-inline-color="" style="--darkreader-inline-color:#3db3ff; color: rgb(51, 175, 255) !important; font-size: 30px;">T</span><span style="font-size: 30px;"><span data-darkreader-inline-color="" style="color: rgb(232, 192, 96) !important; --darkreader-inline-color:#e8c163; font-size:30px;">L</span><span data-darkreader-inline-color="" style="color: rgb(101, 195, 173) !important; --darkreader-inline-color:#6ec7b2; font-size:30px;">D</span></span><span data-darkreader-inline-color="" style="--darkreader-inline-color:#dd6e6e; color: rgb(220, 107, 107) !important; font-size: 30px;">R</span>
<br>
</td></tr></tbody></table>
<br>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr id="together-with"><td align="center" height="20" style="vertical-align:middle !important;" valign="middle" width="100%"><strong style="vertical-align:middle !important; height: 100%;">Together With </strong>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fpages.dataiku.com%2Fmodernize-governance-agentic-ai%3Futm_campaign=GLO%252520CONTENT%252520Agents%2525202025%26utm_source=glo-tldr%26utm_medium=paid-email%26utm_content=data-primary/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/PCZbY9rYLrHvCZdFPrYvlDwmMsAyAZoMN8LtDSMuBs8=431"><img src="https://images.tldr.tech/dataiku-3.png" valign="middle" style="vertical-align: middle !important; height: 100%;" alt="Dataiku"></a></td></tr></tbody></table>
<table style="table-layout: fixed; width:100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;">
<div style="text-align: center;">
<h1><strong>TLDR Data <span id="date">2025-11-17</span></strong></h1>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width:100%;" width="100%"><tbody><tr id="sponsy-copy"><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fpages.dataiku.com%2Fmodernize-governance-agentic-ai%3Futm_campaign=GLO%252520CONTENT%252520Agents%2525202025%26utm_source=glo-tldr%26utm_medium=paid-email%26utm_content=data-primary/2/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/10hCFKVSPsSgq2r3LATmmMd6md3JghP8d2sU_wtkuJo=431">
<span>
<strong>Build Guardrails to Scale AI Agents (Sponsor)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Learn how to <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fpages.dataiku.com%2Fmodernize-governance-agentic-ai%3Futm_campaign=GLO%252520CONTENT%252520Agents%2525202025%26utm_source=glo-tldr%26utm_medium=paid-email%26utm_content=data-primary/3/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/4xO0tDDDkv2D2t75iLMn_--0-o_jrgCzH3MRDtww4Mk=431" rel="noopener noreferrer nofollow" target="_blank"><span><strong>reduce regulatory risk</strong></span></a>, control agent behavior, and avoid costly missteps as your teams adopt GenAI.
<br>
<br>This <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fpages.dataiku.com%2Fmodernize-governance-agentic-ai%3Futm_campaign=GLO%252520CONTENT%252520Agents%2525202025%26utm_source=glo-tldr%26utm_medium=paid-email%26utm_content=data-primary/4/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/0rZWp_K0vWtpciT4MSxAX12iCfIDMVIlDfn-QCurEtQ=431" rel="noopener noreferrer nofollow" target="_blank"><span><strong>BARC report</strong></span></a>, sponsored by Dataiku, shows how organizations can extend governance from data to models to agents. It covers the operational, regulatory, and reputational risks of agentic AI and shows how to close the gaps before they become board-level problems.
<p></p>
<p><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fpages.dataiku.com%2Fmodernize-governance-agentic-ai%3Futm_campaign=GLO%252520CONTENT%252520Agents%2525202025%26utm_source=glo-tldr%26utm_medium=paid-email%26utm_content=data-primary/5/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/XZxMF3JBQlJ4k4hEqKVyBusfd3zoAPGrZp4w-40T_JE=431" rel="noopener noreferrer nofollow" target="_blank"><span><strong>Read now</strong></span></a> to benchmark your AI governance readiness.
</p>
</span></span></div>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr>
<tr bgcolor=""><td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π±</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Deep Dives</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.uber.com%2Fblog%2Fi-o-observability-for-ubers-massive-petabyte-scale-data-lake%2F%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/GFEDSOzGK0kNZXFyKW9G4RjsfymOL8Je3itqUsEMV9A=431">
<span>
<strong>I/O Observability for Uber's Massive Petabyte-Scale Data Lake (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Uber engineered a unified, zero-touch I/O observability system to monitor read/write patterns across its petabyte-scale data lake, spanning on-premises and cloud storage. By intercepting file system operations, it efficiently monitors 400K daily Spark apps, 2M Presto queries, and 6.7M YARN containers with less than 5-minute delay, enabling precise network egress attribution, cross-zone congestion detection, and dataset heat-maps for tiering.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Faws.amazon.com%2Fblogs%2Fbig-data%2Fhow-yelp-modernized-its-data-infrastructure-with-a-streaming-lakehouse-on-aws%2F%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/sjJD60DsyjqK5RndCMiDrjmUP_TDBYWA2PIlK-e5v0Y=431">
<span>
<strong>How Yelp modernized its data infrastructure with a streaming lakehouse on AWS (12 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Yelp overhauled its legacy data pipelines by adopting a streaming lakehouse architecture built with Apache Flink, Apache Paimon, Amazon MSK, and S3, slashing analytics data latency from 18 hours to minutes and reducing storage costs by over 80%. The migration replaced bespoke CDC formats and complex Kafka chains with SQL-accessible, versioned tables and community-supported standards, enabling flexible scaling, real-time CDC, and built-in data management features like schema evolution.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fclickhouse.com%2Fblog%2Fai-first-data-warehouse%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/qQztLHm3YYxoFJ78JJzDVzrywidKmUUnV-xEL-gi9Rw=431">
<span>
<strong>How We Made Our Internal Data Warehouse AI-first (13 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
ClickHouse transformed its internal data warehouse from a traditional BI-focused system to an AI-first setup, allowing users to gain insights via natural language queries without SQL. This addresses analytics bottlenecks, handling ~70% of use cases, driven by advanced LLMs (e.g., Anthropic's Claude models) and the Model Context Protocol (MCP). The result, DWAINE (Data Warehouse AI Natural Expert), democratizes data access, slashing query times from 30-45 minutes to near-instant, while reducing analyst workload by 50-70%.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div>
</div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Opinions & Advice</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fdataengineeringcentral.substack.com%2Fp%2F650gb-of-data-delta-lake-on-s3-polars%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/KNxRpWhdFtnwckYzbkPsHv1Ujt1hezJIjpoRxP9DIDM=431">
<span>
<strong>650GB of Data (Delta Lake on S3). Polars vs DuckDB vs Daft vs Spark (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Testing DuckDB, Polars, and Daft on a 32GB EC2 node against a 650GB Delta Lake table demonstrated that single-node engines can efficiently process large lakehouse datasets: Polars completed a full aggregation in 12 minutes, DuckDB in 16, Daft in 50, and PySpark in over an hour. Distributed clusters, while still relevant, are no longer essential for such workloads thanks to impressive Larger-Than-Memory support and simple integration. Single-node frameworks deliver substantial cost savings, reduced operational complexity, and straightforward code, challenging conventional lakehouse architecture assumptions.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftowardsdatascience.com%2Forganizing-code-experiments-and-research-for-kaggle-competitions%2F%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/GQvp7wgoLn6SeHZ6clcH-g19cK5Ws3r2mPpN2iZ00W0=431">
<span>
<strong>Organizing Code, Experiments, and Research for Kaggle Competitions (14 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Robust code organization, meticulous experiment tracking, and reproducible environments are non-negotiable for successful data science projects. Using modular repo structures, version control, and tools like wandb and Hydra streamlines experimentation and collaboration across platforms.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.theseattledataguy.com%2Fbatch-vs-real-time-data-pipelines-do-we-still-need-to-pick%2F%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/-MWuNcCJu-uwLfTobDwRP9XImcsVCNqA2jw6yHv4MMw=431">
<span>
<strong>Batch Vs Real-Time Data Pipelines β Do We Still Need To Pick? (5 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
While the debate between batch and real-time/streaming data pipelines persists, modern tools like Estuary allow seamless toggling between modes, letting teams run real-time for high-stakes needs and batch/micro-batch elsewhere to cut costs. This enables dynamic pipeline adjustments based on business value and use cases, with hybrid or "right-time" approaches offering flexibility to balance cost, complexity, and timeliness.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="http://tracking.tldrnewsletter.com/CL0/http:%2F%2Frudderstack.com%2Fblog%2Fscaling-data-products-fix-the-foundation%2F%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/Zo_y-bPuiqIP3V7HwH2fYg3X2kjTH-1fs5HJkagMWR8=431">
<span>
<strong>Scaling Data Products Starts With Fixing the Foundation: Five Lessons We've Learned (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Most failures in scaling data products stem from weak foundational pipelines rather than flawed models or analytics. By treating pipelines like products that come with clear ownership, versioned changes, SLOs, and standardized plumbing, teams can build reliable, observable data foundations that could scale.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π»</span></div>
</div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Launches & Tools</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.getdbt.com%2Fresources%2Fstructured-for-intelligence-why-al-needs-governed-discoverable-and-provisioned-data%3Futm_medium=paid-email%26utm_source=tldr%26utm_campaign=q4-2026_tldr-newsletters_cv%26utm_content=_newsletter2___%26utm_term=all_all__/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/mgVskYvFZHe24S6-aFFJKIDB9hebo6oJ2-oWfzC0gQU=431">
<span>
<strong>O'Reilly + dbt Labs report: Building platforms designed for AI success (Sponsor)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Without structured, trusted data, your AI investments stall or stumble. This <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.getdbt.com%2Fresources%2Fstructured-for-intelligence-why-al-needs-governed-discoverable-and-provisioned-data%3Futm_medium=paid-email%26utm_source=tldr%26utm_campaign=q4-2026_tldr-newsletters_cv%26utm_content=_newsletter2___%26utm_term=all_all__/2/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/4dmJl0VHSToh6F2Q92EOKU3VslZM-MvTt_9aERPSYQk=431" rel="noopener noreferrer nofollow" target="_blank"><span>early release eBook</span></a> from O'Reilly and dbt Labs lays out the<strong> tools, governance, and strategy</strong> needed to structure data for AI. Learn how to turn fragmented systems into AI-ready platforms, preempt compliance issues, and position your enterprise ahead of competitors. Read the early chapters and get the full report sent to you when it's released. <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.getdbt.com%2Fresources%2Fstructured-for-intelligence-why-al-needs-governed-discoverable-and-provisioned-data%3Futm_medium=paid-email%26utm_source=tldr%26utm_campaign=q4-2026_tldr-newsletters_cv%26utm_content=_newsletter2___%26utm_term=all_all__/3/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/CM-Q-HLB43Pelvs5xlICuyfPrcwWIO5lIushY88CQQM=431" rel="noopener noreferrer nofollow" target="_blank"><span>Get your copy</span></a>
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fpeter.eisentraut.org%2Fblog%2F2025%2F11%2F11%2Fwaiting-for-sql-202y-group-by-all%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/HnhvIySEfSjAzSQCrE78FDhufUWZHAepRLGhBXeXR1s=431">
<span>
<strong>Waiting for SQL:202y: GROUP BY ALL (4 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
GROUP BY ALL is a new SQL feature that automatically groups by all non-aggregate expressions in the SELECT list, removing the need to repeat columns manually. It works well for simple queries but intentionally avoids handling ambiguous cases where expressions mix aggregates and non-aggregates. Changes to the SELECT list implicitly change the grouping, so it should be used with care, especially in complex queries.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fcloud.google.com%2Fblog%2Fproducts%2Fdata-analytics%2Fsql-reimagined-for-the-ai-era-with-bigquery-ai-functions%2F%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/0RAsGCatjoB5c10kdAHTNkF-jXm1Pj5LlFVj7ZFOOlE=431">
<span>
<strong>Announcing BigQuery-managed AI functions for better SQL (4 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
BigQuery now supports AI.IF, AI.CLASSIFY, and AI.SCORE functions, enabling direct semantic filtering, classification, and ranking of unstructured data in SQL without manual prompt tuning or model selection. These managed AI functions use Gemini LLMs and integrate with WHERE, JOIN, GROUP BY, and ORDER BY clauses.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><strong><h1>Miscellaneous</h1></strong></div>
</div>
</td></tr></tbody></table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fmedium.com%2Fcapital-one-tech%2Fcapital-one-at-emnlp-2025-trust-and-efficiency-in-ai-d87afc16a0cd%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/YI4MdeOn45nvFAxc3xRZeaDogOdJyI8IC6JoJXZka-k=431">
<span>
<strong>Capital One at EMNLP 2025: Trust and efficiency in AI (7 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Capital One showcased several peer-reviewed advances at EMNLP 2025, including a multi-agent LLM framework for complex financial workflows (MACAW) and a data augmentation framework (GRAID), which boosts guardrail model F1 scores by 12%. Additional key contributions feature a merged-embedding approach delivering 47.5% greater RAG consistency, TruthTorchLM for multi-method truthfulness evaluation, and activation-based confidence estimation enabling fast and trustworthy LLM deployment.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fmedium.com%2Fwomenintechnology%2Freflections-from-jupytercon-2025-8ace9e6b27ab%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/zAih7S3FQ8dFSuNLCias4YAsepE47r0cDNcjfYr6c0g=431">
<span>
<strong>Reflections from JupyterCon 2025 β A Week of Ideas, Code, and Community (4 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
The Jupyter ecosystem has evolved far beyond notebooks: it's powering enterprise AI pipelines, reproducible research, and data-science applications at scale. From extension workshops to community sprints, what stood out most at JupyterCon 2025 was the human side - showing that thriving open-source isn't just about code, it's about people.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.anthropic.com%2Fengineering%2Feffective-context-engineering-for-ai-agents%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/q5tV9mYIFs-3A0yvvWSlN6OxRQF66JJtHEMONd4MQ8U=431">
<span>
<strong>Effective context engineering for AI agents (12 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Context engineering has become critical for building reliable, long-horizon LLM agents, shifting focus from prompt optimization to actively managing the set of information (βtokens') sent to models at inference time. Effective strategies, such as compaction, structured note-taking, dynamic just-in-time retrieval, and sub-agent architectures, address context window constraints, minimize context rot, and improve agent coherence across complex workflows.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">β‘</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Quick Links</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fpytorch.org%2Fblog%2Fbeyond-quantization-bringing-sparse-inference-to-pytorch%2F%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/nIfIj96TMRSNxqrlb3KtRMDohXw10KZIv_ac--AcXFw=431">
<span>
<strong>Beyond Quantization: Bringing Sparse Inference to PyTorch (6 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Sparse inference is emerging as a transformative optimization for LLM deployment.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.infoq.com%2Fnews%2F2025%2F11%2Faws-dynamodb-outage-postmortem%2F%3Futm_source=tldrdata/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/9U7HdZoLeTVJzuT4TiPqvs7QRskJdFm3nIRr1GFovEQ=431">
<span>
<strong>Race Condition in DynamoDB DNS System: Analyzing the AWS US-EAST-1 Outage (3 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
The prolonged AWS US-EAST-1 outage of October 19 was caused by a latent race condition in DynamoDB's automated DNS management system.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td align="left" style="word-break: break-word; vertical-align: top; padding: 5px 10px;">
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to advertise in TLDR? π°
</p>
<div class="text-block" style="margin-top: 10px;">
If your company is interested in reaching an audience of data engineering professionals and decision makers, you may want to <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%2F%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisecta/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/f3t3-rSBL6PHsT4njOBvt_VMmyMtfUYdDliBTTDd4k0=431"><strong><span>advertise with us</span></strong></a>.
</div>
<br>
<!-- New "Want to work at TLDR?" section -->
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to work at TLDR? πΌ
</p>
<div class="text-block" style="margin-top: 10px;">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fjobs.ashbyhq.com%2Ftldr.tech/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/gqcoajNOresF05c0CxOLhrS3hMWNTLGH92hjyEOVeyE=431" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>Apply here</strong></a> or send a friend's resume to <a href="mailto:jobs@tldr.tech" style="color: #0000EE; text-decoration: underline;">jobs@tldr.tech</a> and get $1k if we hire them!
</div>
<br>
<div class="text-block">
If you have any comments or feedback, just respond to this email!
<br>
<br> Thanks for reading,
<br>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjoelvanveluwen%2F/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/svqcD1qFdlqh71VRFQeKs1_7461lruDfvzDlIhnEcMo=431"><span>Joel Van Veluwen</span></a>, <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjennytzurueyching%2F/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/26jf-DuyZcOEINHVgBP-bBqioTH3graCm6uFqQHep5E=431"><span>Tzu-Ruey Ching</span></a> & <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fremi-turpaud%2F/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/KKWYl14Slh1vopdhfLHFQgPlE75T9lG_v37GDWBh-rQ=431"><span>Remi Turpaud</span></a>
<br>
<br>
</div>
<br>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block" id="testing-id">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%2Fmanage%3Femail=silk.theater.56%2540fwdnl.com/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/1OLOXwLXQnIy1yEIfarWheMLNr4TawppeT8hpsnzNz0=431">Manage your subscriptions</a> to our other newsletters on tech, startups, and programming. Or if TLDR Data isn't for you, please <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Funsubscribe%3Fep=1%26l=037ede50-92cc-11ee-b0f2-b761aa2217ad%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=8feee390-c370-11f0-8152-edea959ee060%26pt=campaign%26pv=4%26spa=1763377266%26t=1763377606%26s=9e375f86facd74bf516cebbda020636be0a9fcedd5cb009d5e9053a726dc6508/1/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/kJTrHULIq3GSYu8daMTbz5yQa1MVsBqQIom75RLnQ4M=431">unsubscribe</a>.
<br>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
<img alt="" src="http://tracking.tldrnewsletter.com/CI0/0100019a917ef01d-5155f3d4-a6dd-4b09-b6c5-ce6b1dd19ea4-000000/bcG2j_xsmlRNPHcd9-qD7lZTCEMUoT_PSmt2_6Q3nJk=431" style="display: none; width: 1px; height: 1px;">
</body></html>