<!DOCTYPE html><html lang="en"><head><meta http-equiv="Content-Type" content="text/html charset=UTF-8"><meta charset="UTF-8"><meta name="viewport" content="width=device-width"><meta name="x-apple-disable-message-reformatting"><title>TLDR Data</title><meta name="color-scheme" content="light dark"><meta name="supported-color-schemes" content="light dark"><style type="text/css">
:root {
color-scheme: light dark; supported-color-schemes: light dark;
}
*,
*:after,
*:before {
-webkit-box-sizing: border-box; -moz-box-sizing: border-box; box-sizing: border-box;
}
* {
-ms-text-size-adjust: 100%; -webkit-text-size-adjust: 100%;
}
html,
body,
.document {
width: 100% !important; height: 100% !important; margin: 0; padding: 0;
}
body {
-webkit-font-smoothing: antialiased; -moz-osx-font-smoothing: grayscale; text-rendering: optimizeLegibility;
}
div[style*="margin: 16px 0"] {
margin: 0 !important;
}
table,
td {
mso-table-lspace: 0pt; mso-table-rspace: 0pt;
}
table {
border-spacing: 0; border-collapse: collapse; table-layout: fixed; margin: 0 auto;
}
img {
-ms-interpolation-mode: bicubic; max-width: 100%; border: 0;
}
*[x-apple-data-detectors] {
color: inherit !important; text-decoration: none !important;
}
.x-gmail-data-detectors,
.x-gmail-data-detectors *,
.aBn {
border-bottom: 0 !important; cursor: default !important;
}
.btn {
-webkit-transition: all 200ms ease; transition: all 200ms ease;
}
.btn:hover {
background-color: #f67575; border-color: #f67575;
}
* {
font-family: Arial, Helvetica, sans-serif; font-size: 18px;
}
@media screen and (max-width: 600px) {
.container {
width: 100%; margin: auto;
}
.stack {
display: block!important; width: 100%!important; max-width: 100%!important;
}
.btn {
display: block; width: 100%; text-align: center;
}
}
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
body,
p,
td,
tr,
.body,
table,
h1,
h2,
h3,
h4,
h5,
h6,
div,
span {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
a {
color: inherit !important; text-decoration: underline !important;
}
</style><!--[if mso | ie]>
<style type="text/css">
a {
background-color: #FEFEFE !important; color: #010101 !important;
}
@media (prefers-color-scheme: dark) {
a {
background-color: #27292D !important; color: #FEFEFE !important;
}
}
</style>
<![endif]--></head><body class="">
<div style="display: none; max-height: 0px; overflow: hidden;">Pinterest transfers hundreds of terabytes daily from numerous sharded MySQL sources to analytical systems using Kafka Connect and Debezium. β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β β </div>
<div style="display: none; max-height: 0px; overflow: hidden;">
<br>
</div>
<table align="center" class="document"><tbody><tr><td valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" class="container" width="600"><tbody><tr class="inner-body"><td>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr class="header"><td bgcolor="" class="container">
<table width="100%"><tbody><tr><td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" style="margin-top: 0px;" width="100%"><tbody><tr><td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div style="text-align: center;">
<span style="margin-right: 0px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/fioL2LmneDB7caejqkw0KP07js-LNVrYkS_cEEcYyM0=428" rel="noopener noreferrer" target="_blank"><span>Sign Up</span></a>
|<span style="margin-right: 2px; margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisetopnav/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/qD4DI7PsNHG65SAGkUOopsr0VoPU93hG0lIfyrq_2To=428" rel="noopener noreferrer" target="_blank"><span>Advertise</span></a></span>|<span style="margin-left: 2px;"><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Fweb-version%3Fep=1%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=cee95d54-afdf-11f0-8030-ffe3ba284ac3%26pt=campaign%26t=1761214001%26s=407909b0d3135fe012ae796e4973e1c99311641922ad1a343cd001543be5d42c/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/giGbC862jYWfR0lkd_uJGBqYuL7F8OhXHy0voG7pk4E=428"><span>View Online</span></a></span>
<br>
</span></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="text-align: center;"><span data-darkreader-inline-color="" style="--darkreader-inline-color:#3db3ff; color: rgb(51, 175, 255) !important; font-size: 30px;">T</span><span style="font-size: 30px;"><span data-darkreader-inline-color="" style="color: rgb(232, 192, 96) !important; --darkreader-inline-color:#e8c163; font-size:30px;">L</span><span data-darkreader-inline-color="" style="color: rgb(101, 195, 173) !important; --darkreader-inline-color:#6ec7b2; font-size:30px;">D</span></span><span data-darkreader-inline-color="" style="--darkreader-inline-color:#dd6e6e; color: rgb(220, 107, 107) !important; font-size: 30px;">R</span>
<br>
</td></tr></tbody></table>
<br>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr id="together-with"><td align="center" height="20" style="vertical-align:middle !important;" valign="middle" width="100%"><strong style="vertical-align:middle !important; height: 100%;">Together With </strong>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Faws.amazon.com%2Fmarketplace%2Fbuild-learn%2Fdata-analytics%3Ftrk=b3024556-eeb5-4772-8c51-e4de21fe6b35%26sc_channel=el/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/zAlxjicms3lgya36UooBfShjUDFkgXdBXQkiNsIujzw=428"><img src="https://images.tldr.tech/awsroidna.png" valign="middle" style="vertical-align: middle !important; height: 100%;" alt="AWS"></a></td></tr></tbody></table>
<table style="table-layout: fixed; width:100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;">
<div style="text-align: center;">
<h1><strong>TLDR Data <span id="date">2025-10-23</span></strong></h1>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width:100%;" width="100%"><tbody><tr id="sponsy-copy"><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Faws.amazon.com%2Fmarketplace%2Fbuild-learn%2Fdata-analytics%3Ftrk=b3024556-eeb5-4772-8c51-e4de21fe6b35%26sc_channel=el/2/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/agcfQ_hmdUm41T00xYJWAB9NCWMGAvEy24fat4jfThg=428">
<span>
<strong>Data architecture tools and guides for your next AI project (Sponsor)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Accelerate your AI/ML initiatives with enterprise-ready solutions in AWS Marketplace. From vector databases to ML workflow orchestration, <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Faws.amazon.com%2Fmarketplace%2Fbuild-learn%2Fdata-analytics%3Ftrk=b3024556-eeb5-4772-8c51-e4de21fe6b35%26sc_channel=el/3/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/J4TdULjUF8P3I0z5GTYqAsaZzOdRInEIrTwlbpwyxyM=428" rel="noopener noreferrer nofollow" target="_blank"><span>explore our tools</span></a> today to scale your AI applications while maintaining security standards.
<p></p>
<p><a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Faws.amazon.com%2Fmarketplace%2Fbuild-learn%2Fdata-analytics%3Ftrk=b3024556-eeb5-4772-8c51-e4de21fe6b35%26sc_channel=el/4/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/3uLxu8k59YszfBKxZiMZy5sEQHZQyyn23-d-pgh_2cs=428" rel="noopener noreferrer nofollow" target="_blank"><span>Discover our technical guides</span></a> to streamline implementation, or start your free trial to see how these solutions can transform your AI development journey from proof-of-concept to production.
</p>
</span></span></div>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr>
<tr bgcolor=""><td class="container">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td style="padding: 0px;">
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π±</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Deep Dives</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fblog.bytebytego.com%2Fp%2Fhow-pinterest-transfers-hundreds%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/E6fBRSFFrTR2GFZnkq27nCYbEXjqy0sildNaNVdMTQQ=428">
<span>
<strong>How Pinterest Transfers Hundreds of Terabytes of Data With CDC (5 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Pinterest transfers hundreds of terabytes daily from numerous sharded MySQL sources to analytical systems using Kafka Connect and Debezium. By separating configuration and streaming logic, they ensure safe connector updates, reroute partitions, and maintain exactly-once semantics under heavy load. They prevent data duplication during recovery with metadata synchronization and idempotent replays, and enforce schema evolution rules.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.uber.com%2Fblog%2Frebuilding-ubers-apache-pinot-query-architecture%2F%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/mbzhjx_jE7c1nY86wCfURY1X6mgTLeZi2Ziv89wz1ng=428">
<span>
<strong>Rebuilding Uber's Apache Pinot Query Architecture (10 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Uber transitioned from a complex, layered Presto-based (Neutrino) architecture to a simplified, brokerless design using Pinot's new Multi-Stage Engine (MSE) Lite Mode to enhance reliability, reduce latency, and support complex OLAP queries at scale. This enhancement powers hundreds of millions of daily low-latency queries for user analytics, log search, and tracing.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fnetflixtechblog.com%2Fbehind-the-streams-real-time-recommendations-for-live-events-e027cb313f8f%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/oOxmywobUeM0RAhxlSSbvxd89x6s1BWCJ6X-gKW1U0A=428">
<span>
<strong>Behind the Streams: Real-Time Recommendations for Live Events Part 3 (8 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Netflix deployed a two-phase approach to deliver real-time recommendations during live events like NFL games, where it must align precisely with event timing to avoid missed moments while handling massive concurrent demand across 100M+ devices. The two phases include prefetching recommendations via GraphQL to the Domain Graph Service during routine browsing to evenly distribute load, followed by broadcasting low-cardinality messages (state keys and timestamps) via WebSockets to all devices at event critical moments.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.rungalileo.io%2Fblog%2Fmastering-rag-how-to-architect-an-enterprise-rag-system%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/q6XOIC8t-rWIs9nILbjeLhvT1qQrSUX8D-3fpZYmg8o=428">
<span>
<strong>Mastering RAG: How To Architect An Enterprise RAG System (94 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Building a robust enterprise RAG system requires a modular architecture with strong authentication, input/output guardrails, advanced query rewriting, rigorous custom encoder selection, scalable document ingestion, and careful vector database choices. Implement reranking, hybrid search, and diverse chunking methods to reduce irrelevant or incomplete answers. Continuous LLM observability, user feedback loops, and caching drive system reliability, efficiency, and cost control.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div>
</div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Opinions & Advice</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fhex.tech%2Fblog%2Fwhy-analytics-agents-break-differently%2F%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/jy7UhI4s6WNZnB8ihvz8-Q7M3R_aazsDEnBwLn9hOj0=428">
<span>
<strong>Why Analytics Agents Break Differently (5 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Analytics agents fail differently from coding ones because data can't be summarized without losing meaning. Hex learned that overloading models with raw data breaks reasoning, so it built structured context maps, set strict token limits, and made truncation explicit to help agents navigate and analyze data more effectively.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.nan.fyi%2Fdatabase%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/TYjoWwgYNM17_97nzZe1yFbLvAza-1sDknvea6VFetk=428">
<span>
<strong>Build Your Own Database (10 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Building a key-value database from scratch reveals how simple file storage evolves into scalable systems. Append-only files with compaction improve durability, while indexing and sorting boost read speed at the cost of slower writes. These ideas form the basis of Log-Structured Merge Trees, used in databases like LevelDB and DynamoDB.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftowardsdatascience.com%2Fbeyond-rag%2F%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/osmY_VF4s-vjwRphQKMcFtTG7Wvf8IqTwQ1tIqJOYK0=428">
<span>
<strong>Is RAG Dead? The Rise of Context Engineering and Semantic Layers for Agentic AI (18 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
RAG was only the starting point of the Context Engineering discipline. Modern context engineering now incorporates context writing, compression, isolation, and selection, demanding robust metadata management, policy-as-code guardrails, and multimodal capabilities. Knowledge graphs underpin explainable, trustworthy, and scalable AI, while new evaluation metrics (relevance, groundedness, provenance, recency) underpin enterprise-grade solutions.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fbuttondown.com%2Fjaffray%2Farchive%2Fthe-death-of-thread-per-core%2F%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/bURm6eVV7SdZGxuG8AfACHvr1fqdvSnKU6ofWZrxsHE=428">
<span>
<strong>The Death of Thread Per Core (3 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Async runtimes like those in Rust shift from rigid thread-per-core models toward dynamic, work-stealing approaches, enabling better workload balancing, especially under skewed or unpredictable data distributions. Modern query engines benefit from granular scheduling, leveraging predictive insights about tasks to merge or split workloads efficiently. This shared-state concurrency improves elasticity and better addresses scaling and multitenancy challenges, making dynamic task reshuffling integral to resilient, high-performance data processing platforms.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π»</span></div>
</div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Launches & Tools</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fcloud.google.com%2Fresources%2Fcontent%2Fdatabases-customer-stories-2025%3Fe=48754805%26hl=en%26utm_source=cloud_sfdc%26utm_medium=email%26utm_campaign=FY25-Q2-GLOBAL-ENT35086-website-dl-DBCustStories25-62347%26utm_content=tldr%26utm_term=oct_23/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/D2sjw1EQZaz4tDGllT-HLAAknrl491zzp3qGOpAgJUs=428">
<span>
<strong>Building with Google Cloud databases: a collection of 70+ case studies (Sponsor)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Learn how 70+ companies improved performance, scaled globally, and optimized costs using Google Cloud's managed database services: <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fcloud.google.com%2Fresources%2Fcontent%2Fdatabases-customer-stories-2025%3Fe=48754805%26hl=en%26utm_source=cloud_sfdc%26utm_medium=email%26utm_campaign=FY25-Q2-GLOBAL-ENT35086-website-dl-DBCustStories25-62347%26utm_content=tldr%26utm_term=oct_23/2/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/W40dYztBE2WDtE1LHJg9FJSz4NB_wvKlYVYZo4zJrwI=428" rel="noopener noreferrer nofollow" target="_blank"><span>AlloyDB, Cloud SQL, Spanner, Memorystore, Bigtable, and Firestore</span></a>. Each case study is a one-pager that distills the key insights from deployments at companies like Macy's, Wayfair, Yahoo, and many others. <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fcloud.google.com%2Fresources%2Fcontent%2Fdatabases-customer-stories-2025%3Fe=48754805%26hl=en%26utm_source=cloud_sfdc%26utm_medium=email%26utm_campaign=FY25-Q2-GLOBAL-ENT35086-website-dl-DBCustStories25-62347%26utm_content=tldr%26utm_term=oct_23/3/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/GK8ydGOvuVq0ayZmJF389r9UPIbcOEntV0ZlUDz-0Vk=428" rel="noopener noreferrer nofollow" target="_blank"><span>Get the resource</span></a>
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fquery.farm%2Fduckdb_extension_tera.html%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/ffrfJPhu5VH-mPB2CV9flHM9b6U48XpSDIhTsmCxlMg=428">
<span>
<strong>DuckDB Tera Extension (Tool)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Query.Farm's Tera extension adds template rendering directly into DuckDB, allowing SQL queries to dynamically generate text, HTML, JSON, or configuration files using the Tera templating engine. It lets you embed variables, loops, and conditions inside templates to produce formatted reports, API responses, or configuration outputs directly from database data without leaving SQL.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fgithub.com%2Findextables%2Findextables_spark%2F%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/OlCBiphL5hv98xNe4U3dKlLXUAYYsB_CTnKPIrGnvB8=428">
<span>
<strong>IndexTables for Spark (GitHub Repo)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Built by the IndexTables project, this Apache-2.0-licensed library adds a high-performance, full-text-search-capable open table format integrated with Spark SQL. It enables SQL queries with full text search and fast retrieval across large-scale data sets. Still experimental and less mature than mainstream formats, it may offer value when search-style queries dominate and Hadoop/Spark is already in use.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fdataware.dev%2Fblog%2Fdatabases-without-os-meet-quininehm.html%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/sDWnbESen1IVwIc7jUDxgB-CQ6qurNv1IWRT8drU3Is=428">
<span>
<strong>Databases Without an OS? Meet QuinineHM (11 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
QuinineHM is a βHardware Managerβ that replaces the operating system to run databases directly on bare metal. This removes context-switch and scheduler overhead, exposing CPUs, memory, and NICs directly to workloads for deterministic speed and near-zero attack surface. Its first product, TonicDB, a Redis-compatible in-memory DB, runs up to 20x faster and 3x cheaper.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">π</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><strong><h1>Miscellaneous</h1></strong></div>
</div>
</td></tr></tbody></table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fmedium.com%2Fpinterest-engineering%2Fidentify-user-journeys-at-pinterest-b517f6275b42%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/XrldUUVH8RaqwCPL-JSwFWZCIafpTC-yTnlhlSkVIN4=428">
<span>
<strong>Identify User Journeys at Pinterest (8 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
By modeling user journeys as hierarchical clusters of activities (searches, Pins, boards), Pinterest shifts from short-term interests to personalized, intent-driven recommendations, addressing limited training data for new journey-focused products, with lean, foundation-model-based techniques. The pipeline includes extracting keywords from activities, clustering/embedding them, ranking/naming/expanding journeys, predict stages (situational/evergreen), and output scored lists.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fflink-watermarks.wtf%2F%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/xpsZVM215cxwZr4w_ta6OB3vZ8VlyGBXcZuFtB_SrSI=428">
<span>
<strong>Apache Flink Watermarksβ¦WTF? (Website)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
This interactive website visually illustrates how Flink uses watermarks to manage event-time in streams and establish when it's safe to treat earlier timestamps as complete and trigger windows. Key takeaways: generate timestamps early, use a strategy tailored to your data's out-of-order characteristics, and remember that in multi-input operators the watermark advances only as fast as the slowest upstream source, so skew or idle partitions can bottleneck your pipeline.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;"><span style="font-size: 36px;">β‘</span></div></div>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding-top: 0px; padding-bottom: 0px;">
<div class="text-block">
<div style="text-align: center;">
<h1><strong>Quick Links</strong></h1>
</div>
</div>
</td></tr></tbody></table>
<table bgcolor="" style="table-layout: fixed; width: 100%;" width="100%"><tbody><tr><td style="padding:0;border-collapse:collapse;border-spacing:0;margin:0;" valign="top">
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.tigerdata.com%2Fblog%2Fpostgres-for-agents%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/V1G2tBgDSl3SOM2tGqOM9f-fgXtyFNkT6M7JcFPBKGY=428">
<span>
<strong>Postgres for Agents (5 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Agentic Postgres is a version of PostgreSQL built for AI agents.
</span>
</span>
</div>
</td></tr></tbody></table>
<table align="center" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block">
<span>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fengineering.grab.com%2Fmodernising-grab-model-serving-platform%3Futm_source=tldrdata/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/-z_dGzexQLoAdBY9pBUcfR4_RZNTBTcJms9IAYNzuL0=428">
<span>
<strong>Modernising Grab's Model Serving Platform with NVIDIA Triton Inference Server (6 minute read)</strong>
</span>
</a>
<br>
<br>
<span style="font-family: "Helvetica Neue", Helvetica, Arial, Verdana, sans-serif;">
Migrating to Triton cut p90 latency 6x and reduced infrastructure costs by ~20% across half of Grab's online ML deployments.
</span>
</span>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td align="left" style="word-break: break-word; vertical-align: top; padding: 5px 10px;">
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to advertise in TLDR? π°
</p>
<div class="text-block" style="margin-top: 10px;">
If your company is interested in reaching an audience of data engineering professionals and decision makers, you may want to <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fadvertise.tldr.tech%2F%3Futm_source=tldrdata%26utm_medium=newsletter%26utm_campaign=advertisecta/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/egu_4eEd6hWqQTyRNtPnDpT55Mrao0GMC8ElTXlBZD0=428"><strong><span>advertise with us</span></strong></a>.
</div>
<br>
<!-- New "Want to work at TLDR?" section -->
<p style="padding: 0; margin: 0; font-size: 22px; color: #000000; line-height: 1.6; font-weight: bold;">
Want to work at TLDR? πΌ
</p>
<div class="text-block" style="margin-top: 10px;">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fjobs.ashbyhq.com%2Ftldr.tech/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/gXk2PXlui6zVBdOGuMXFU_4PP-eyj6xjzt9cifHMyG0=428" rel="noopener noreferrer" style="color: #0000EE; text-decoration: underline;" target="_blank"><strong>Apply here</strong></a> or send a friend's resume to <a href="mailto:jobs@tldr.tech" style="color: #0000EE; text-decoration: underline;">jobs@tldr.tech</a> and get $1k if we hire them!
</div>
<br>
<div class="text-block">
If you have any comments or feedback, just respond to this email!
<br>
<br> Thanks for reading,
<br>
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjoelvanveluwen%2F/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/1uoTLoW4N_Lt-LnczV4xnZY3_XyUpNTbj3s2ac7BCPc=428"><span>Joel Van Veluwen</span></a>, <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fjennytzurueyching%2F/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/AV9HSl8_kuc_k37kyDxAUPIqEXodYuq0BrcAuy3P3Bg=428"><span>Tzu-Ruey Ching</span></a> & <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fwww.linkedin.com%2Fin%2Fremi-turpaud%2F/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/CASAeajkcClBAHZkmfMtFUbKej283CCsSteBtimSMHk=428"><span>Remi Turpaud</span></a>
<br>
<br>
</div>
<br>
</td></tr></tbody></table>
<table align="center" bgcolor="" border="0" cellpadding="0" cellspacing="0" width="100%"><tbody><tr><td class="container" style="padding: 15px 15px;">
<div class="text-block" id="testing-id">
<a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Ftldr.tech%2Fdata%2Fmanage%3Femail=silk.theater.56%2540fwdnl.com/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/27zkZBmBtCKWP9cq2Yi5CoeiOgWZ4BbyqOYwO0wDR5U=428">Manage your subscriptions</a> to our other newsletters on tech, startups, and programming. Or if TLDR Data isn't for you, please <a href="https://tracking.tldrnewsletter.com/CL0/https:%2F%2Fa.tldrnewsletter.com%2Funsubscribe%3Fep=1%26l=037ede50-92cc-11ee-b0f2-b761aa2217ad%26lc=1670a604-84b7-11f0-bcf5-55fc1d40139c%26p=cee95d54-afdf-11f0-8030-ffe3ba284ac3%26pt=campaign%26pv=4%26spa=1761213679%26t=1761214001%26s=74966faae0e72da0939ba4b8ea16b96cd7155204d49f7a893a225d48c254227e/1/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/2eVB6nnEM_I9WBhKD3pUqVk9HLUIEVXQwHv7v0fNYbY=428">unsubscribe</a>.
<br>
</div>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
</td></tr></tbody></table>
<img alt="" src="http://tracking.tldrnewsletter.com/CI0/0100019a1088f24e-957a2659-fe4d-4f80-bfed-17033216f9f2-000000/B-It0b8mFJjitBSICtyALi9wzh8tE6Wdn-XQU9RtiOg=428" style="display: none; width: 1px; height: 1px;">
</body></html>